Localized attraction correlates with bacterial adhesion to glass and metal oxide substrata.
نویسندگان
چکیده
Bacterial adhesion to surfaces does not always proceed according to theoretical expectations. Discrepancies are often attributed to surface heterogeneities that provide localized, favorable sites for bacterial attachment. The presence of these favorable deposition sites for bacteria, however, has never been directly measured. Atomic force microscopy (AFM) was used to quantify the distribution of attractive sites on clean substrata. Surfaces of silica and three different metal oxides mapped by adhesion force with regular or colloidal AFM tips showed a heterogeneous distribution of adhesion forces. Adhesion forces were normally distributed based on a colloid probe, but regular tips revealed a proportionately larger number of relatively more adhesive sites. No correlation was found between the average adhesion force (tip or colloid) and macroscopic adhesion tests using five strains of bacteria. However, when AFM tip results were compared to bacterial adhesion data on the basis of only the stickiest sites (the 5% of sites with the largest adhesion force), there was a good correlation of AFM data with adhesion data. These results demonstrate for the first time how overall bacterial adhesion to a surface effectively correlates with a relatively small fraction of highly adhesive sites rather than averaged adhesion force as detected using AFM.
منابع مشابه
Bacterial adhesion to glass and metal-oxide surfaces.
Metal oxides can increase the adhesion of negatively-charged bacteria to surfaces primarily due to their positive charge. However, the hydrophobicity of a metal-oxide surface can also increase adhesion of bacteria. In order to understand the relative contribution of charge and hydrophobicity to bacterial adhesion, we measured the adhesion of 8 strains of bacteria, under conditions of low and hi...
متن کاملThe impact of ultraviolet light on bacterial adhesion to glass and metal oxide-coated surface.
Biofouling of glass and quartz surfaces can be reduced when the surface is coated with photocatalytically active metal oxides, such as TiO2 (anatase form) or SnO2. We measured the attachment of eight strains of bacteria to these two metal oxides (TiO2 and SnO2), and to an uncoated glass (control; designated Si-m) before and after exposure to UV light at wavelengths of 254 nm (UVC) or 340 nm UV ...
متن کاملInhibition of adhesion of yeasts and bacteria by poly(ethylene oxide)-brushes on glass in a parallel plate flow chamber.
Poly(ethylene oxide) (PEO)-brushes are generally recognized as protein-repellent surfaces, and although a role in discouraging microbial adhesion has been established for some strains and species, no study exists on the effects of PEO-brushes on a large variety of bacterial and yeast strains. In this paper, a PEO-brush has been covalently attached to glass and silica by reaction in a polymer me...
متن کاملAdhesion of Streptococcus Mutans to Zirconia, Enamel, IPS Empress II, Noble Alloy and Base-metal: An In-Vitro Comparative Study
Introduction: With increased usage of restorative materials, dentists are more concerned in choosing a suitable material with lower adhesion of pathogens like streptococci. This comparative in vitro study aimed to compare adhesion of streptococcus mutans to zirconia, IPS Empress II, noble alloy, and base-metal. Materials and Methods: In this descriptive study, 50 specimens (5 mm diameter disk ...
متن کاملSurface enhanced bacterial fluorescence and enumeration of bacterial adhesion.
The use of flow displacement systems for studying initial bacterial adhesion to surfaces is mostly confined to transparent substrata. The objective of this study was to investigate a method based on macroscopic fluorescence imaging to enumerate adhering fluorescent bacteria on non-transparent substrata, real-time and under flow. To this end, a stepwise protocol is described to quantify adhesion...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Environmental science & technology
دوره 40 9 شماره
صفحات -
تاریخ انتشار 2006